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Docking, scoring, molecular dynamics (MD), and the linear interaction energy (LIE) method are used here to
predict binding modes and affinities for a set of 43 non-nucleoside inhibitors to HIV-1 reverse transcriptase.
Starting from a crystallographic structure, the binding modes of 43 inhibitors are predicted using automated
docking. The Goldscore scoring function and the LIE method are then used to determine the relative binding free
energies for the inhibitors. The Goldscore scoring function does not reproduce the relative binding affinities for
the inhibitors, while the standard parametrization of the LIE method reproduces the experimental binding free
energies for 39 inhibitors with an R2 ) 0.70 and an unsigned average error of 0.8 kcal/mol. The present calculations
provide a validation of the combination of docking, MD, and LIE as a powerful tool in structure-based drug
design, and the methodology is easily scalable for attaining a higher throughput of compounds.

1. Introduction

HIV-1 reverse transcriptase (RT) is one of the main targets
in the development of drugs against AIDS. An interesting
class of anti-HIV drugs is the non-nucleoside RT inhibitors
(NNRTIs). The NNRTIs are a diverse group of compounds
that bind to a cavity which is created upon formation of the
RT-inhibitor complex, thereby inducing a conformational
change that inhibits the function of RT. Several NNRTIs,
e.g., Nevirapine and Efavirenz, are already used in AIDS
therapy, but a major problem is that drug resistant mutants
arise quickly after treatment is initiated. A great challenge
is therefore to continuously develop new inhibitors that are
effective against both the wild type and mutant forms of the
enzyme.1–3

In the case of RT, where crystallographic data is available,
computational structure-based drug design is a promising
approach to identify and optimize drug candidates. Starting from
a known receptor structure, the binding modes for a set of
ligands can often be successfully modeled using automated
docking.4–8 In general, these methods allow only limited or no
receptor flexibility and, hence, it is assumed that the chosen
structure provides a reasonable representation of the protein in
its complexed form. For example, docking of inhibitors to the
uncomplexed state of RT would be useless considering that
significant conformational changes in the protein are required
to create the NNRTI binding site. Once binding modes of the
ligands have been predicted, the choice of method to estimate
the free energies of binding is, in practice, determined by the
number of compounds to be analyzed.9 Empirical10,11 and
knowledge-based12,13 scoring functions estimate the binding
affinity from a single structure of the protein-ligand complex
and can be used to filter out drug candidates from large databases
of compounds (∼107). Whereas the empirical scoring functions
are appealing for their speed, they treat contributions to the
binding free energy, e.g., entropy and solvation, in a very
approximate fashion, which makes it difficult to obtain accurate
predictions. For smaller sets of ligands, explicit solvent molec-

ular dynamics (MD)a and Monte Carlo (MC) simulations can
be used to accurately describe receptor flexibility and solvation.
The most advanced approaches used with MD and MC
simulations are the free energy perturbation (FEP) and thermo-
dynamic integration (TI) methods.14,15 FEP and TI can be used
to estimate absolute or relative binding free energies, but the
calculations are computationally demanding and the techniques
are limited to only a few similar ligands (∼10).16–19 The linear
interaction energy (LIE) method is a semiempirical approach
that combines the advantages of FEP and TI with useful
approximations that improve convergence and decrease com-
putation time.20 The LIE method gives the opportunity to study
larger sets of ligands (∼103) and is suitable for lead optimiza-
tion. LIE binding free energies are estimated from MD or MC
simulations of the bound and the free state of a ligand, and
from these two simulations, the ligand-surrounding (l-s) elec-
trostatic and van der Waals energies are collected. The binding
free energy is evaluated from

∆Gbind
LIE )R∆〈Ul-s

vdW〉 + �∆〈Ul-s
el 〉 + γ (1)

where the ∆’s denote that the difference between the energies
for the bound and free states is taken. 〈Ul-s

x 〉 represents MD or
MC averages of intermolecular electrostatic (x ) el) and van
der Waals (x ) vdW) energies for the ligand with its surround-
ings. In our standard parametrization of the LIE method, R )
0.18 and the � values vary between 0.33 and 0.5 depending on
the chemical nature of the ligand.21 The parameter γ is a constant
term for ligands that bind to the same receptor and only needs
to be considered for calculations of absolute binding free
energies.20–22 Our standard parametrization of the LIE method
has previously been applied to several different protein-ligand
complexes with impressive results.21–25

In this work, docking, scoring, MD simulations, and the LIE
method are combined to predict binding modes and estimate
binding free energies for 43 NNRTIs to RT. The GOLD docking
program4,5 is used to predict the binding modes for the
inhibitors. The relative affinities of the inhibitors are then
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estimated using the Goldscore scoring function and MD
simulations combined with the LIE method. Both the standard
and a series of alternative LIE models, in which an additional
scaling factor or intramolecular ligand energies are introduced,
are investigated. The protein residues that are responsible for
the difference in binding affinities between the inhibitors are
also identified and these results are compared to experimental
data on common mutants of RT. The present work can also be
viewed as a benchmark that serves as a validation of the
combined docking and LIE methodology in a realistic inhibitor
design situation, and the procedure is straightforward to scale
up into a higher throughput of compounds.

2. Methods

2.1. Solute Starting Structures and Docking Calculations.
The studied inhibitors are a series of benzylpyridinone derivatives,
which are shown in Table 1. A crystallographic structure of HIV-1

RT in complex with 62 (PDB code 2BAN26) was used as protein
starting structure in all docking and MD simulations of the
RT-inhibitor complexes. Each inhibitor was first minimized in the
program Gaussian27 using AM128 and then docked into RT using
GOLD4,5 with default genetic search parameters and 20 docking
runs. The top three docking solutions from each docking calculation
were inspected manually. If the three solutions represented a similar
binding mode, these conformations were selected for MD simula-
tions. In cases where the three top solutions had considerably
different binding modes, three conformations from the largest cluster
of solutions were used in the MD simulations. For 77a and 77b,
the binding mode of a related inhibitor is available (PDB code:
2B5J26), and in these two cases, three conformations similar to that
of this structure were chosen.

2.2. MD Simulations. MD simulations were performed using
the program Q.29 Simulations of the bound and free state for each
inhibitor were carried out in an 18 Å sphere centered on the
inhibitor. Except for the partial charges of the thiourea inhibitors,
OPLS all-atom30 force field parameters were used in all simulations.

Table 1. NNRTIs Used in This Work and Their Experimental IC50 Values (µM)36a

R1 R2 R3 R4 R5 IC50

9 CH3 CH3 3,5-diCH3 CH3 C2H5 0.008
18b CH3 CH3 3,5-diCH3 CH3 CH3 0.005
18c CH3 CH3 3,5-diCH3 C2H5 CH3 0.010
18d CH3 CH3 3,5-diCH3 CH3 i-C4H9 0.050
18e CH3 CH3 3,5-diCH3 i-C3H7 CH3 0.794
18f CH3 CH3 3,5-diCH3 CH3 n-C3H7 0.050
18g CH3 CH3 3,5-diCH3 H H 7.943
18h CH3 CH3 3,5-diCH3 CH3 H 0.398
18i CH3 CH3 3,5-diCH3 -(CH2)4- -(CH2)4- 0.010
36 H CHO 3,5-diCH3 CH3 C2H5 0.079
37 H CH3 3,5-diCH3 CH3 C2H5 0.010
38 CH3 C2H5 3,5-diCH3 CH3 C2H5 0.008
39 CH3 C3H7 3,5-diCH3 CH3 C2H5 0.016
40 CH3 CH(CH3)CH2OCH3 3,5-diCH3 CH3 C2H5 0.006
41 CH3 (CH2)3SCH3 3,5-diCH3 CH3 C2H5 0.025
42 CH3 CH2CH2OCH3 3,5-diCH3 CH3 C2H5 0.002
43 CH3 (CH2)5OH 3,5-diCH3 CH3 C2H5 0.004
44 H COCH3 3,5-diCH3 CH3 C2H5 0.398
45 H COC2H5 3,5-diCH3 CH3 C2H5 3.981
46 H COC3H7 3,5-diCH3 CH3 C2H5 100
47 H C2H5 3,5-diCH3 CH3 C2H5 0.016
48 H C3H7 3,5-diCH3 CH3 C2H5 0.020
49 H C4H9 3,5-diCH3 CH3 C2H5 0.126
50 C2H5 C2H5 3,5-diCH3 CH3 C2H5 0.016
51 C4H9 C4H9 3,5-diCH3 CH3 C2H5 50.119
52 H CH2C6H5 3,5-diCH3 CH3 C2H5 0.251
53 CH2C6H5 CH2C6H5 3,5-diCH3 CH3 C2H5 100
54 (CH2CH2)2O (CH2CH2)2O 3,5-diCH3 CH3 C2H5 0.158
55 (CH2)5 (CH2)5 3,5-diCH3 CH3 C2H5 0.631
56 -CHdCH-CHdCH- -CHdCH-CHdCH- 3,5-diCH3 CH3 C2H5 0.0126
59 CH3 (CH2)2OH 3-CH3 CH3 C2H5 0.005
60 CH3 (CH2)3OH 3-CH3 CH3 C2H5 0.003
61 CH3 (CH2)5OH 3-CH3 CH3 C2H5 0.010
62 CH3 (CH2)2OCH3 3-CH3 CH3 C2H5 0.001
63 CH3 (CH2)2OC2H5 3-CH3 CH3 C2H5 0.013
64 CH3 CH2CN 3-CH3 CH3 C2H5 0.004
65 CH3 (CH2)2CN 3-CH3 CH3 C2H5 0.016
66 CH3 (CH2)3CN 3-CH3 CH3 C2H5 0.005
67 H NH-CS-NHC2H5 3-CH3 CH3 C2H5 25.119
68 H NH-CS-NHC6H5 3-CH3 CH3 C2H5 3.162
70 H NH-CS-NH2 3-CH3 CH3 C2H5 0.316
77a CH3 C2H5 3-CHdCHCN CH3 C2H5 0.001
77b CH3 (CH2)2OCH3 3-CHdCHCN CH3 C2H5 0.001

a The naming of the inhibitors has been adopted from ref 36.
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For the substituents of inhibitors 67, 68, and 70, 6-31G*/RESP
charges were derived.31 In the simulations, Lys103A, Glu138B,
Asp192A, Asp186A, Asp237A, Lys172A, Lys101A, and Lys102A
were ionized and all other residues close to the sphere edge or
further away than 18 Å were set to their neutral state. Because all
ligands in the present data set are neutral, no correction for distant
ionizable groups is needed.18 The protonation states of the histidines
within the sphere were set by manual inspection. Each system was
solvated by adding a spherical TIP3P32 water grid of radius 18 Å
and removing all water molecules closer than 2.4 Å of any solute
heavy atom. For the solvated RT-inhibitor system, all protein
residues within 18 Å of the center of the sphere were explicitly
included in the simulations. All atoms outside the sphere were
tightly restrained to their initial coordinates and excluded from
nonbonded interactions. For the free inhibitors in water, a weak
harmonic restraint was applied to the geometrical center of the solute
to prevent it from approaching the sphere edge. The SHAKE33

algorithm was applied to all solvent bonds and angles and the water
molecules at the sphere surface were subjected to radial and
polarization restraints.29,34 The nonbonded cutoff was set to 10 Å
for all atoms except for the inhibitor, to which no cutoff was applied.
Long-range electrostatic interactions were treated with the local
reaction field approximation.35 The time step was set to 1 fs, and
the simulations were carried out at a constant temperature of 310
K. For each simulation of the RT-inhibitor complex, the system
was slowly heated while restraints on the solute coordinates to their
initial positions were gradually released. This was followed by 50
ps of unrestrained equilibration and a 500 ps production phase in
which ligand-surrounding energies were collected every 25 fs.
Starting from slightly different initial conditions, two sets of MD
simulations of the RT-inhibitor complexes were carried out for
each of the three conformations extracted from the docking
calculations. The reported ligand-surrounding energy for each ligand
is taken as an average over these trajectories, and errors were
estimated from the standard error of the mean. In water, a short
equilibration was followed by a 500-600 ps production phase and
three simulations, starting from different initial conformations, were
carried out for each inhibitor.

2.3. Experimental and Computational Estimates of Binding
Free Energies. Approximate (relative) experimental binding free
energies were estimated from IC50 values36 at 310 K using the
relationship ∆Gbind

obs ) RT ln(IC50) + c, where c is a constant (c )
-RT ln[1 + S/KM]).37 Computationally, the relative affinities of
the inhibitors were estimated using the Goldscore scoring function
and the LIE method. The Goldscore, SGOLD, is defined as described
on the Cambridge Crystallographic Data Centre Web site (www.
ccdc.cam.ac.uk), i.e., SGOLD ) 1.375 × SvdW-ext + Shb-ext, where
SvdW-ext and Shb-ext are the external van der Waals and hydrogen
bond terms in the GOLD fitness function, respectively. SGOLD does
not explicitly represent a free energy but has been found to correlate
well with experimental binding free energies.38 For the LIE method,
three different models were first compared by using different values
for R and � in eq 1. The value of the � coefficient can be derived
from linear response approximation, which predicts that � ) 0.5.39

However, on the basis of rigorous FEP calculations in different
solvents carried out by Åqvist and Hansson,39 the � value used for
a ligand in the standard parametrization of the LIE method, �FEP,
is determined by its chemical groups. For the inhibitors studied
here, �FEP is equal to 0.43 in all cases except for 43 and 59-61
(for which �FEP ) 0.37).21 The second term in eq 1 represents the
nonpolar contribution to binding. This approximation is based on
the linear relationships that are observed between solvation free
energies of nonpolar molecules and the ligand-surrounding van der
Waals energy.20,40 In the standard LIE parametrization, R was
determined to be 0.18 based on simulations of 18 protein-ligand
complexes.21 Because only relative binding free energies can be
extracted from the experimental data, the constant γ is freely
optimized to minimize the root-mean-square (rms) deviation from
experiment for all studied models. The standard model was also
compared to a model where the �FEP values of the standard model
are replaced by refined �FEP values according to the scheme that

was derived by Almlöf et al. (model A: for all inhibitors, �FEP )
0.43, except for 37, 43, 47-49, 52, 59-61, (�FEP ) 0.41), and 70
(�FEP ) 0.42)).41 These models were also compared to model B,
where R, �, and γ are all freely optimized by minimizing the rms
deviation from experimental free energies of binding. This model
thus serves as a check of the robustness of earlier parametrizations.
In model C, an alternative form of eq 1 is investigated by scaling
the electrostatic ligand-surrounding energies for the bound (b) and
free (f) state separately21,41

∆Gbind ) �b〈Ul-s
el〉b - �f〈Ul-s

el〉 f +R∆〈Ul-s
vdW〉 + γ (2)

where �b, �f, and γ are optimized. Finally, model D is based on eq
3 and includes both intra- (l-l) and intermolecular (l-s) ligand
electrostatic energies

∆Gbind ) �(∆〈Ul-s
el〉 +∆〈Ul-l

el〉)+R∆〈Ul-s
vdW〉 + γ (3)

where the values of R, �, and γ are freely optimized. To compare
the different models, several statistical figures of merit were
computed. The coefficient of multiple determination measures the
overall fit of a model and is calculated from

R2 ) 1- SSE
SST

(4)

where SSE ) ∑i (∆Gi
calc - ∆Gi

obs)2 and SST ) ∑i (∆Gi
obs -

〈∆Gobs〉)2. ∆Gi
calc and ∆Gi

obs are the calculated and observed binding
free energies for ligand i, respectively. An LIE model that
reproduces all experimental free energies has an R2 ) 1.0. The
leave-one-out cross-validated coefficient, Qloo

2 , assesses the predic-
tivity of a model and is calculated from

Qloo
2 ) 1- PRESS

SST
(5)

where PRESS is the predictive residual sum of squares, PRESS )
∑j (∆Gj

calc - ∆Gj
obs)2. In this case, ∆Gj

calc is calculated from an
LIE model optimized on all data points except ligand j.

3. Results and Discussion

3.1. Docking and Scoring. The docked conformation of
inhibitor 62 closely reproduces the crystallographic structure
of the complex (rmsd ) 0.6 Å, Figure 1). The main difference
between the two structures is the orientation of the 5-ethyl group,
which also could not be resolved from the experimental electron
density.26 Inhibitor 62 binds to RT in a conformation similar to
the NNRTIs 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thy-
mine (HEPT42) and 6-benzyl-1-(ethoxymethyl)-5-isopropyluracil
(MKC-44243).44,45Furthermore, the obtained docking solutions for
a majority of the other 42 inhibitors are similar to the binding mode
of inhibitor 62. The chosen binding modes for four of the inhibitors

Figure 1. Experimental and docked structure of inhibitor 62. The
experimental and docked structures are shown with white and green
carbon atoms, respectively.
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(38, 40, 46, and 77b) are shown in Figure 2. From the docking
calculations, a Goldscore for each inhibitor can be extracted and
compared to experimental binding data. The results, based on the
average score of the three chosen conformations for each inhibitor,
are shown in Figure 3. There is no correlation between Goldscore
and the experimental data and these results agree with recently
published studies, which indicate that docking algorithms in many
cases can identify the correct binding mode but they are not able
to rank different inhibitors by affinity.46

3.2. Molecular Dynamics Simulations and LIE Binding
Free Energies. Calculated ligand-surrounding energies for the
inhibitors are shown in Table 2 and are based on averages over
all the MD simulations carried out for each inhibitor. For all
the investigated LIE models, it was found that excluding
inhibitors 36, 37, 51, and 53 resulted in significantly better
correlation with experiment, and in all the results presented
below, these inhibitors have been excluded from the analysis.
The inaccurate predictions made for these four inhibitors may
partially be explained by the estimation of experimental free
energies of binding from IC50 values, which are based on cell-
assay experiments and might not only reflect inhibition of RT,
but also solubility problems. Another explanation, is that it may
be difficult to predict the correct binding modes for inhibitors
that are significantly larger (51, 53) or smaller (36, 37) compared
to 62. It can be speculated that the protein structure in complex
with some of the studied inhibitors might deviate significantly
from the RT-inhibitor 62 complex. For example, Tyr181 has
been found to have two completely different conformations for
inhibitors similar to those studied here.26,45 Because protein
flexibility is not explicitly taken into account in the docking
calculations, this may lead to the prediction of incorrect binding
modes for some inhibitors, resulting in difficulties to predict
accurate binding free energies.

The results for all the investigated LIE models are sum-
marized in Table 3. The standard parametrization of the LIE
method (� ) �FEP and R ) 0.18) reproduces the experimental
results with an average unsigned error of 0.8 kcal/mol (R2 )

Figure 2. Docking solutions for inhibitors (A) 38, (B) 40, (C) 46, and (D) 77b.

Figure 3. Goldscore (SGOLD) vs experimental binding free energies
(∆Gbind

obs in kcal/mol). The solid line represents the best fit between SGOLD

and ∆Gbind
obs(r2 ) 0.02).
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0.70). Using the refined �FEP values of Almlöf et al.41 (model
A), where a weighting scheme is used to derive a specific �
value for each inhibitor, the correlation with experiment is
slightly improved (R2 ) 0.71). However, this refined model is
likely to become superior when dealing with larger compounds
with more functional groups.41 A similar correlation was found
for model B, and the calculated values of R and � in this model,
where both coefficients in eq 1 are optimized, are very close to
the standard parametrization (R ) 0.20, � ) 0.43). This result
again confirms the robustness of the earlier parametrizations. It
should be noted that the relative binding free energies of the

studied inhibitors are largely determined by the change in ligand-
surrounding electrostatic energies. The nonpolar contribution,
calculated from the ligand-surrounding van der Waals energies,
is rather similar for the inhibitors and, hence, does not contribute
significantly to the relative binding free energies. The finding
that the electrostatic term in the LIE method determines the
relative binding free energies for this data set also provides a
possible explanation for the poor results obtained using Gold-
score. The only term representing polar interactions in this
scoring function is a simple hydrogen bond term, which may
not be a sufficiently accurate description. In conclusion, the
standard parametrization of eq 1 can predict the binding free
energies of the 39 inhibitors very well, and the results for this
model are shown in Figure 4. For comparison, the inhibitors
that were excluded from the LIE analysis (36, 37, 51, and 53)
were also excluded for Goldscore, but this did not improve the
results significantly. Previously, Jorgensen and co-workers have
carried out an impressive amount of binding free energy
calculations on NNRTIs using the extended linear response
(ELR) method in conjunction with MC simulations.47,48 In
contrast to the LIE method, a large number (∼15) of different
descriptors, e.g., surface area and the ligand’s dipole moment,
are used in this approach, and in order to make accurate
predictions, the ELR equation has to be reparameterized for each
receptor.

Table 2. Ligand-Surrounding Electrostatic (〈Ul-s
el 〉) and van der Waals (〈Ul-s

vdW〉) Energies (kcal/mol) for the Bound (b) and Free State (f) of the
Inhibitorsa

inhibitor 〈U l-s
vdW〉b 〈U l-s

vdW〉 f 〈U l-s
el 〉b 〈U l-s

el 〉 f ∆Gbind
obs ∆Gbind

calc

9 -51.5 ( 0.2 -28.1 ( 0.0 -18.2 ( 0.3 -27.9 ( 0.1 -11.5 -10.2 ( 0.2
18b -49.8 ( 0.4 -26.9 ( 0.0 -17.7 ( 0.2 -27.5 ( 0.1 -11.8 -10.1 ( 0.2
18c -51.7 ( 0.4 -28.4 ( 0.1 -19.4 ( 0.5 -27.0 ( 0.1 -11.3 -11.1 ( 0.4
18d -55.6 ( 0.1 -30.4 ( 0.1 -18.4 ( 0.3 -26.9 ( 0.1 -10.3 -11.0 ( 0.2
18e -53.8 ( 0.3 -29.7 ( 0.0 -16.0 ( 0.5 -26.2 ( 0.1 -8.6 -10.1 ( 0.3
18f -53.5 ( 0.3 -29.5 ( 0.1 -18.0 ( 0.2 -27.3 ( 0.2 -10.3 -10.5 ( 0.2
18g -45.0 ( 1.0 -24.3 ( 0.1 -12.4 ( 1.4 -26.8 ( 0.1 -7.2 -7.7 ( 0.8
18h -47.7 ( 0.1 -26.0 ( 0.0 -19.4 ( 0.4 -26.9 ( 0.1 -9.1 -10.9 ( 0.2
18i -54.3 ( 0.4 -29.2 ( 0.1 -18.7 ( 0.4 -27.5 ( 0.1 -11.3 -10.9 ( 0.3
38 -53.7 ( 0.4 -29.5 ( 0.0 -17.7 ( 0.2 -26.0 ( 0.1 -11.5 -11.0 ( 0.2
39 -55.9 ( 0.3 -30.7 ( 0.0 -18.2 ( 0.2 -26.5 ( 0.2 -11.0 -11.2 ( 0.3
40 -57.9 ( 0.6 -32.0 ( 0.1 -21.7 ( 0.4 -28.8 ( 0.3 -11.7 -11.8 ( 0.4
41 -61.1 ( 0.2 -33.1 ( 0.1 -23.5 ( 0.3 -32.6 ( 0.0 -10.8 -11.3 ( 0.2
42 -56.8 ( 0.4 -31.0 ( 0.2 -22.8 ( 0.3 -30.3 ( 0.1 -12.3 -11.6 ( 0.3
43 -59.7 ( 0.1 -31.8 ( 0.2 -33.4 ( 0.7 -41.6 ( 0.5 -11.9 -12.2 ( 0.5
44 -52.2 ( 0.2 -28.1 ( 0.1 -31.8 ( 0.5 -46.2 ( 0.2 -9.1 -8.3 ( 0.4
45 -55.4 ( 0.3 -29.3 ( 0.1 -27.9 ( 1.3 -46.5 ( 0.3 -7.7 -6.9 ( 0.7
46 -57.6 ( 0.3 -30.9 ( 0.1 -27.5 ( 0.5 -45.6 ( 0.2 -5.7 -7.2 ( 0.4
47 -52.2 ( 0.6 -28.1 ( 0.0 -17.3 ( 0.9 -27.6 ( 0.1 -11.0 -10.1 ( 0.5
48 -55.4 ( 0.2 -29.5 ( 0.2 -16.2 ( 0.2 -27.3 ( 0.1 -10.9 -10.1 ( 0.2
49 -57.2 ( 0.2 -31.9 ( 0.1 -16.1 ( 0.3 -28.7 ( 0.1 -9.8 -9.3 ( 0.2
50 -54.0 ( 0.2 -30.5 ( 0.1 -18.8 ( 0.3 -24.9 ( 0.4 -11.0 -11.8 ( 0.3
52 -59.7 ( 0.1 -33.4 ( 0.3 -19.2 ( 0.4 -30.5 ( 0.4 -9.4 -10.1 ( 0.4
54 -54.5 ( 0.4 -30.5 ( 0.1 -23.4 ( 0.6 -33.2 ( 0.1 -9.6 -10.3 ( 0.4
55 -55.9 ( 0.1 -31.7 ( 0.0 -18.8 ( 0.7 -29.9 ( 0.1 -8.8 -9.8 ( 0.4
56 -55.5 ( 0.2 -30.8 ( 0.0 -21.4 ( 0.3 -30.4 ( 0.1 -11.2 -10.8 ( 0.2
59 -50.2 ( 0.1 -26.2 ( 0.1 -35.1 ( 0.3 -38.7 ( 0.1 -11.8 -13.2 ( 0.2
60 -51.6 ( 0.2 -27.6 ( 0.1 -35.3 ( 0.6 -40.2 ( 0.4 -12.1 -12.7 ( 0.4
61 -57.0 ( 0.2 -30.5 ( 0.1 -33.3 ( 0.2 -40.3 ( 0.5 -11.3 -12.4 ( 0.3
62 -54.4 ( 0.2 -29.7 ( 0.1 -23.0 ( 1.1 -29.0 ( 0.1 -12.8 -12.0 ( 0.6
63 -57.0 ( 0.2 -31.1 ( 0.1 -22.5 ( 0.4 -29.1 ( 0.0 -11.2 -12.0 ( 0.3
64 -50.5 ( 0.3 -27.1 ( 0.0 -24.1 ( 0.4 -33.3 ( 0.1 -11.9 -10.5 ( 0.3
65 -52.3 ( 0.3 -28.2 ( 0.1 -26.9 ( 0.3 -34.8 ( 0.4 -11.0 -11.1 ( 0.4
66 -55.5 ( 0.4 -29.2 ( 0.1 -27.1 ( 1.1 -36.4 ( 0.2 -11.8 -11.0 ( 0.7
67 -55.4 ( 0.2 -29.8 ( 0.1 -32.9 ( 0.2 -49.8 ( 0.2 -6.5 -7.5 ( 0.2
68 -61.1 ( 0.3 -33.6 ( 0.2 -32.4 ( 0.3 -50.6 ( 0.5 -7.8 -7.3 ( 0.5
70 -48.1 ( 0.3 -25.5 ( 0.0 -44.4 ( 2.1 -54.7 ( 0.1 -9.2 -9.8 ( 1.0
77a -54.5 ( 0.3 -30.5 ( 0.1 -21.3 ( 0.8 -30.2 ( 0.3 -12.8 -10.7 ( 0.6
77b -58.0 ( 0.2 -32.3 ( 0.2 -26.1 ( 0.3 -34.4 ( 0.3 -12.8 -11.3 ( 0.4

a Experimental and calculated LIE (standard parameterization) binding free energies (kcal/mol) are also shown. The naming of the inhibitors has been
adopted from ref 36.

Table 3. Comparison of Statistical Figures of Merit for the Five
Analyzed LIE Modelsa

model R � 〈 |error|〉 rms R2 Qloo
2

standardb 0.18 �FEP 0.82 0.95 0.70 0.68
Ac 0.18 �′FEP 0.78 0.93 0.71 0.70
Bd 0.20 0.43 0.79 0.93 0.71 0.66
Ce 0.18 0.41/0.43g 0.78 0.92 0.72 0.67
Df 0.20 0.45 0.88 1.10 0.60 0.54

a The values of the optimized scaling factors are shown in bold. Inhibitors
36, 37, 51, and 53 have been excluded from all models. b γ in eq 1 is
optimized, γ ) -10.2 kcal/mol. �FEP values are set according to ref 21. c γ
in eq 1 is optimized, γ ) -10.2 kcal/mol. �′FEP values are set according to
ref 41. For the calculations of �′FEP values for inhibitor 67, 68, and 70, it
has been assumed that thioureas and amides have the same �′FEP values.
d R, �, and γ in eq 1 are optimized, γ ) -9.7 kcal/mol. e �b, �f, and γ in
eq 2 are optimized γ ) -10.6 kcal/mol. f R, �, and γ in eq 3 are optimized,
γ ) -9.7 kcal/mol. g �b/�f.

2652 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 9 Carlsson et al.



To investigate if the results could be further improved by
modifying the LIE equation, two alternative forms of eq 1 were
analyzed. In the LIE model based on eq 2, different scaling
factors for the protein and water environment are used for the
electrostatic contribution to binding. Åqvist and co-workers have
shown that the approximation for the polar contribution in LIE
is excellent for small molecules in aqueous phase.39,41 In eq 1,
the same scaling factors are assumed to be valid for the protein
binding site, but it can be argued that the � value for the protein
environment (�b) should be larger than that in aqueous phase
(�f) in many cases, e.g., when the protein is preorganized for
ligand binding.22,49 However, in the standard parametrization
of the LIE method, which is based on 18 protein-ligand
complexes, separate � values for the protein and water environ-
ment did not improve agreement with experiment.21 Using this
alternative, LIE formulation (model C) with R ) 0.18 and
parametrizing �b and �f yields scaling factors that are very close
to the standard parametrization (�b ) 0.41 and �f ) 0.43) and
it does not improve agreement with experimental results
significantly. Hence, in agreement with the conclusion of
Hansson et al.,21 introducing the complexity of having an extra
parameter does not seem to be justified in this case. In eq 3,
the use of intramolecular energies in the LIE method is also
investigated. The differences in energies taken in eq 1 to estimate
binding free energies are based only on the ligand’s interactions
with its surroundings. The free energy contributions arising from
solvent-solvent and intramolecular receptor and ligand interac-
tions are not explicitly included in the LIE method. Instead,
given that the linear response approximation holds, the contribu-
tions from electrostatic protein-protein and solvent-solvent
interactions are taken into account by the scaling factor �.20,39,50

Although the same argument could be used for intramolecular
ligand energies,50 a recent study of the accuracy of the linear
response approximation in water gave some support for also
including intramolecular ligand energies in predictions of the
electrostatic contribution to the free energy of hydration.41

However, including intramolecular electrostatic energies (eq 3)
and parametrizing R, �, and γ (model D) yields an R2 ) 0.60
and an rms deviation of 1.1 kcal/mol, which is significantly
worse compared to the original LIE model (eq 1). From the
results of models C and D, including intramolecular energies
or an additional scaling factor for the electrostatic ligand-
surrounding energies, does not improve the accuracy of standard
form of the LIE method.

3.3. Which RT Residues are Important for Binding? From
the MD simulations, the RT-inhibitor electrostatic and van der

Waals interaction energies can be analyzed to identify residues
that are important for binding. The average electrostatic interac-
tion energies, over all inhibitors, for the RT residues that
contribute significantly to the binding free energy are shown in
Figure 5A. Lys101, Lys103, and Glu138 make the largest
contributions to the electrostatic component of the average
ligand-residue interaction energies and are equal to -6.8, -9.5,
and 2.7 kcal/mol, respectively. Furthermore, the standard
deviations in ligand-residue electrostatic energies, again over
all inhibitors, are the largest for the same three residues. The
difference in ligand-water electrostatic interaction energies
between the bound and free state also vary widely among the
inhibitors. As described in the previous section, the ligand-
surrounding electrostatic energy is also the most relevant
descriptor of the relative binding free energies. Remarkably,
the sum of the electrostatic contributions from Lys101, Lys103,
and Glu138, together with the desolvation term, also correlates
well with the experimental binding affinities (Figure 6). This
implies that these four energetic contributions largely determine
the difference in binding affinity between the inhibitors.
Structurally, these energetic contributions can be traced back
to the strength of the hydrogen bond to the Lys101 backbone
carbonyl, the inhibitors’ interactions with the side chains of
Glu138 and Lys103, and the degree of desolvation upon binding.
The obtained correlation between activity and only a few
interaction energies suggest that efficient LIE models may be
based on only monitoring a subset of the ligand-residue
interactions. By introducing empirical scaling factors for each
interaction energy, multivariate analysis can be used to identify
the energetic contributions from the binding site that reproduce
experimental data. The parametrized model can then be used
in scoring and lead optimization of inhibitors of unknown
activity. Application of this approach, including all inhibitors
in Table 1, yields a strong correlation (R2 ) 0.89) between
calculated and experimental binding affinities and will be
presented elsewhere (Carlsson et al., in preparation). The
nonpolar free energy contribution, calculated from the change
in ligand-surrounding van der Waals energy, is rather similar
for all inhibitors and was not found to correlate with the
experimental affinities. The average van der Waals interaction
energies for the residues that contribute most to the binding
free energy are shown in Figure 5B. Leu100, Tyr181, and
Tyr188 make the largest contributions to the ligand-residue
interaction energies with averages equal to -5.8, -5.0, and -4.7
kcal/mol, respectively. This shows that binding is clearly favored
by van der Waals interactions with these residues. However, it
should be noted that the van der Waals contribution is not as
easily interpreted as the polar term in the LIE method because
it does not only take into account the van der Waals interactions
but also size-dependent terms such as the hydrophobic effect.20,51

The six RT residues that make the three largest van der Waals
and electrostatic contributions to binding of the inhibitors are
shown in Figure 7. These results agree very well with experi-
ments carried out on three common mutants that are resistant
to many NNRTIs: Lys103Asn, Tyr181Cys, and Tyr188Leu.36

Lys103, Tyr181, and Tyr188 were here found to have either
highly favorable electrostatic or van der Waals interactions with
the inhibitors, indicating their importance for tight binding and
inhibition. Experimentally, the Lys103Asn mutation reduces the
binding free energy for the studied inhibitors by approximately
1-3 kcal/mol.36 This strong charge-mediated hydrogen bond
with Lys103 is lost in the mutation to Asn, which leads to a
loss of binding affinity. Structures of RT with the Lys103Asn
mutation without a bound NNRTI also indicate that Asn103

Figure 4. Calculated LIE (∆Gbind
calc) vs experimental (∆Gbind

obs) binding
free energies (kcal/mol). The solid line represents perfect agreement
between ∆Gbind

calc and ∆Gbind
obs .
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stabilizes the unbound state of RT by forming a hydrogen bond
to Tyr188, which could further decrease the binding free
energy.52 The Tyr181Cys and Tyr188Leu mutations make
binding of the inhibitors about 1-5 kcal/mol worse compared
to wild type RT.36 Computationally, Tyr181 and Tyr188 give
large contributions to the ligand-protein van der Waals
interactions. Substituting Tyr for Cys or Leu decreases the
favorable aromatic ring-stacking interactions and leads to a
reduced binding affinity. Reduced NNRTI binding affinities
were also found for mutants of the other three residues in Figure
7.36 Possible strategies to improve the effectiveness of NNRTIs
against resistant strains are to introduce inhibitor flexibility,

which gives the possibility to adapt to these mutations, or to
target backbone interactions and conserved residues, e.g.,
Trp229.53,54

3.4. Analysis of Inhibitor-RT Interactions. The relative
affinities for the different classes of inhibitors in the studied
data set are quite well reproduced by the LIE method. For the
R1, R2-dialkyl substituted inhibitors with an ethyl and methyl
group in R4 and R5, respectively (38, 39, 50, 51, and 55), binding
affinity decreases with increasing chain length. Although the
low affinities of inhibitors 51 and 53 were not reproduced by
Goldscore or the LIE method, it can be speculated that these
bulky substituents affect the strong hydrogen bond to Lys101
and the favorable interactions with the Lys103 side chain amine
group. The same trend is also observed for the inhibitors with

Figure 5. Average ligand-residue interaction energies (〈Ul-s
el/vdW〉 in kcal/mol) over all inhibitors used in the LIE calculations for the residues that

contribute most to the ligand-surrounding (A) electrostatic and (B) van der Waals energies. The average interaction energies are shown using bars,
and the corresponding standard deviations are shown using error bars.

Figure 6. The sum of electrostatic ligand-residue interaction energies
from Lys101, Lys103, Glu138, and the change in solvent interactions
(〈Ul-101,103,138

el + ∆Ul-wat
el 〉) vs experimental binding free energies (∆Gbind

obs

in kcal/mol). The solid line represents the best fit between 〈Ul-101,103,138
el

+ ∆Ul-wat
el 〉 and ∆Gbind

obs (r2 ) 0.57).

Figure 7. Six RT residues that make the three largest van der Waals
and electrostatic contributions to binding for the inhibitors. The binding
mode of inhibitor 40 is also shown.
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secondary amine substituents (37, 47-49, and 52), for which
binding affinity decreases with increasing chain length of R2.
The inhibitors with R1dR2dCH3 (9 and 18b-18i) all have alkyl
substituents in R4 and R5. On average, these inhibitors become
less desolvated upon binding than the other inhibitors and two
of the molecules in this series, 9 and 18b, were experimentally
found to be relatively good binders. Inhibitors with polar
substituents in R1 and R2 lose favorable solvent interactions upon
binding. For inhibitors 43 and 59-61, which were found to be
relatively active against RT, the desolvation can be counterbal-
anced by the formation of a hydrogen bond between the
carboxylate group of Glu138 and the hydroxyl of the substit-
uents. In other cases, e.g., for the inhibitors with nitrile
substituents (64-66), the substituents are partially in contact
with the solvent in the bound state. The amide and thiourea
substituents, on the other hand, are more buried in the RT
binding site. These inhibitors (44-46, 67, 68, and 70) lose a
considerable amount of solvent interactions upon binding and
consequently have very low activities against RT. The experi-
mentally most potent inhibitors, 62 and 77b, are characterized
by strong electrostatic interactions with Lys103 and a small
desolvation energy. These inhibitors are also active against the
three mutated forms described above: Lys103Asn, Tyr181Cys,
and Tyr188Leu. However, because of strong interactions with
these residues, the inhibitors are still several kcal/mol less
efficient toward the mutants compared to the wild type.36

4. Conclusions

The present study investigates the accuracy of docking,
scoring, and MD simulations in combination with the LIE
method on a set of NNRTIs. The standard form and parametri-
zation of the LIE method accurately reproduces the activities
for a majority of the inhibitors, while the results obtained from
Goldscore did not correlate with experiment. Furthermore, no
significant improvement of the results was obtained when
intramolecular electrostatic ligand energies or an additional
scaling factor was included in the LIE model. The protein-
inhibitor interactions were analyzed in detail, and it was found
that the binding free energies of the studied set of NNRTIs can
be described using only a few specific inhibitor interactions.
The results of this analysis also agree very well with experiments
on mutants of RT, which show that identifying the principal
interactions for a class of inhibitors can give important directions
for further optimization of affinity and for the design of
inhibitors that are less susceptible to mutations. The calculations
illustrate that, although MD simulations are computationally
expensive, the LIE method can provide a useful approach for
obtaining accurate predictions of protein-ligand binding free
energies also for relatively large data sets. There are also many
techniques that can be used to reduce the required computation
time for each ligand. In this project, the same amount of
computation time was used for each inhibitor, which resulted
in several nanoseconds of simulation time for each calculated
binding free energy. For a majority of the ligands, the calcula-
tions are converged using a small fraction of this computation
time and long simulations were actually only required in a few
cases. In studies of larger sets of ligands, e.g., in virtual
screening applications, computation time can be significantly
reduced by monitoring the energy convergence and extending
simulations only in cases where it is necessary. Another effective
approach to improve convergence is to perform sampling using
explicit solvent MD simulations and estimate the electrostatic
contributions to binding by postprocessing a series of snapshots
of the complex using Poisson-Boltzmann or Langevin dipoles

methods.55,56 With automated generation of force field param-
eters and MD simulations, the LIE method can now be used to
estimate binding affinities for thousands of potential inhibitors57,58

and, recently, we have applied this approach to rank 1000
molecules against 1-deoxy-D-xylulose-5-phosphate reducto-
isomerase, which is a potential drug target in the development
of drugs against tuberculosis (Carlsson et al., unpublished).
These examples clearly show that force field based methods to
estimate binding free energies have become powerful tools that
successfully can be used in computed-aided drug design.
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